CB Button Gauge

COMPLETE USER MANUAL
By Chris Belcher

CB Digital-Lock Button Gauge

\&

'Simplex Made Simple' [P17]

NOW Manipulating other Digital Locks [P16]

[A Guide to Manipulating Simplex Digital Mechanical Locks]

Digital-Lock Button Gauge

Handy Tool to Help Manipulate the Simplex Handy Tool to

Simplex Made Simple

- Use a Procedure
- Use Logic
- 1 Button Gauge in Plastic Container
- CD with Instructions

Forward

I liken manipulating the Simplex Mechanical Digital Lock to that of picking a 5 Lever Mortice Lock, in that it has 5 Code Gears, each with a Gate. When picking a 5 Lever Mortice Lock, my Stump, when all the Lever's Gates are in alignment with the Bolt-Stump - the bolt will be able to move to the open position.
In picking 5 Lever Mortice Locks The Golden Rule is to only move that Lever which shows most resistance to moving and it is this Procedure which I am applying to the simplex Mechanical Digital Lock. The Multi-Stump Slide and when we apply Tension to the Slide, one or more Stumps will make contact with its own Code Gear. We are able to detect which Code Gears are in the Code and which position they are in within the Code, as well as detecting when a Code Gears Gate is in alignment with its Stump

Chris Belcher

CB.Button Gauge

On the internal of the Button Gauge is a Shaft which simply slides in and out of the Gauge Body, on the visible end of that Shaft there is a single Radial Indicator Line, this is a guide to detect the amount of movement

The Button Gauge will allow you to better judge the difference in depressed position of each button which can vary from lock to lock due to the wear and tear within the Lock / Buttons themselves

The amount of difference in movement of each Button is quite small and for some it maybe difficult to differentiate, without some sort of gauge. Therefore, what appears to be a very simple little 'widget' is actually a very handy tool.

CB.Button Gauge

This tool is to enable you to detect whether a Button Number is in the Code or not. It is to be used as a gauge, hence its name.

After decoding has started and either Button 1 is not in the Code or has been pressed and advanced to align its Gate, other Buttons may be tested those that do not feel solid].
The Button Gauge is placed over the lock Button to be tested whilst applying light tension, the Shaft of the Button Gauge is gently pressed until the Shaft comes to a 'Stop' position [solid].
There is a single Radial Indicator Line on the Button Gauge Shaft which indicates whether a Button number is in the Code or not
To familiarize your-self with the difference between Depressed Position 2 \& Depressed Position 3
Test the CB. Button Gauge on a Simplex Mechanical Digital Lock where the Manufacturers Code is set, ref Code $2 \& 4-3$.
Apply tension and test Button 1 with the Button Gauge to see where the Radial Indicator Line comes to - this is Depressed Position 2.
Repeat the same procedure for Button 5 to see where the Radial Indicator Line comes to - this is Depressed Position 3.

Practical:

A little advice:

I would advise anyone working through this 'practical', to take their time. It would be almost impossible to take this Guide to site for the 1st time, and expect to follow through the Procedure to manipulate a Simplex lock. This has been written in an effort to keep up with technology - we do not de-value technology by expecting to have a Instant 1-2-3 answer to overcoming such products - take your time to really understand this Procedure using this 'practical', and you should be able to use this method when needed. There should be enough information here to allow you to cope with most Codes without resorting to ploughing through hundreds of different permutations, please take note that the codes quoted in this 'practical' are for example purposes and the results of testing may differ from lock to lock.
What is important, is the Procedure

Contents		
Prefix		Forward to Guide, Index, Terminology
Part i	Section 1	Putton Gauge
Part i	Section 2	Colour Code Code Guide
Part i	Section 3	Identifying the Parts of the Code Chamber
Part i	Section 4	The Three Sets of Gears
Part i	Section 5	Charts for Step Changes
Part i	Section 6	Construction \& Operation
Part i	Section 7	Tension \& Pressure
Part i	Section 8	The Number 1 Code Gear
Part ii	Section 1	Manipulate Simplex 1000 etc: Two number Code
Part ii	Section 2	Manipulate Simplex 1000 etc: Three number Code
Part ii	Section 3	Code Charts
Part ii	Section 4	Manipulate Simplex 1000 etc: Double Press
Part ii	Section 5	Manipulate Simplex 1000 etc: Five number Code
Part ii	Section 6	Half Number Press
Suffix		Final Note \& Permutation Table \& Abbreviations

Terminology: As said before, in this 'practical' Guide to manipulating the range of Simplex locks, we are approaching this in the same vein as manipulating a 5 Lever Mortice Lock, that means that we are using terminology similar to that within a mortice lock, if you are already accustomed to using Simplex terminology, the chart below contains some of the equivalent words. Also I have deliberately named the 3 sets of gears, to simplify the procedure.

Otherwise known as:	
Push Buttons/Buttons	Here:
Half Number Function	Button
	Half Number Press
Code Gear	Depressed Position
	Code Gear
Gears	Common Gear Rail
	Primary Gear
Unlocking Slide	Primary Gear Cut-Away
Unlocking Slide Toe	Multi Stump Slide
Gear Pockets	Stump [Bolt Stump]
	Gate

Part i. Section 2. This Guide to Manipulating the Simplex Digital
Mechanical Locks is Colour Coded.

Green represents the Three Sets of Gears - therefore the colour Green relates to these activities

Three Sets of Gears

Example: Code Gear 1-Common Gear Rail- Primary Gear Gear

Blue represents Buttons \& Depressed Positions - therefore the colour Blue relates to these activities

Buttons \& Depressed Positions

Example: Buttons ${ }^{1}$ -
Depressed Position 1

Red represents the Tension \& Pressure - therefore the colour Red relates to these activities.

Tension \& Pressure
Example: Apply tension - using light pressure

Black [bold] represents the Code numbers - therefore the colour Black relates to an activity when referring to the CODE itself.

| Part i. Section 4 | The Three Sets of Gear Gears |
| :--- | :--- | :--- |

Part i. Section 5				
Charts for Step Changes				
In Code $\begin{aligned} & 2-1-3- \\ & 4-5 \end{aligned}$				
Number	2	Has	5	Step Changes
Number	1	Has	4	Step Changes
Number	3	Has	3	Step Chang \square s
Number	4	Has	2	Step Changes
Number	5	Has	1	Step Changes
In Code$2-1-3-4$				
Number	2	Has	4	Step Changes
Number	1	Has	3	Step Changes
Number	3	Has	2	Step Changes
Number	4	Has	1	Step Changes

This is an important point to remember as it will tell us the position in the Code of the number we are working on. It will also help to determine double or triple pressed number Codes etc.

Codes:

There are 5 Buttons numbered 1 to 5.
A Code may consist of 1 number, 2 numbers, 3 numbers, 4 numbers or 5 numbers.
A Code may also consist of double numbers where 2 numbers are pressed at the same time, e.g. You might want to input 2 sets of double numbers such as $2 \& 4-1 \& 5$
A Code may consist of 1 triple number such as $1 \& 2 \& 3$.
A Code may consist of 1 quadruple number or if you have nimble fingers 5 numbers all at once.
A Code may consist of $1 / 2$ Number Presses.

Depressed Position 1

When tested using light pressure, the Button moves a little against spring pressure then feels <<solid>>. This indicates a Button in the Code.

Depressed Position 2

When tested using light pressure the Button moves about $1 / 2$ its travel then feels <<solid>>, this indicates a Button not in the Code. This is because its Stump has engaged its Gate.

Depressed Position 3

When tested with light pressure, the Button moves $3 / 4$ of its travel, this indicates a Code Gear which may or may not be in the Code, because its Stump is not in contact with its Code Gear, and is also the position used for Half Number Press Codes.

Depressed Position 4

Is a Button fully depressed and its Code Gear has been advanced.

Part i. Section 7

Tension \& Pressure

Tension \& Pressure

Tension:

In a 5 Lever Mortice Lock, one applies Tension on the Levers using a tension-wrench to pull back the Bolt Stump until it touches the Levers.

With the Simplex mechanical digital locks such as the Simplex 7000

we have a thumb turn which is
effectively direct drive on the Multi Stump slide of the Code Chamber.

With the 1000 series etc we have a knob or handle,
locks incorporate a clutch between the handle and Multi Stump Slide of
the Code Chamber.
With direct drive, Tension is achieved by turning the thumb turn clockwise, only light Tension is required. If too much Tension is used more than more 1 Button will indicate as being <<SOLID>>.
With those locks that have clutches there is little control, you have to
turn the knob/handle clockwise/anti-clockwise depending on the
variation of the product model [in the opening direction], just enough
to apply Tension but not so much that the clutch slips. (this could be a
bit tiresome)

Part i. Section 8
The Number 1 Code Gear.
Within the Code Chamber, the Code Gears are held in place by spacers
incorporated into a pressed steel cage.
The construction of the cage limits the amount of free axial movement
of the Number 1 Code Gear so much so that when Tension is applied,
the Multi Stump Slide only initially makes contact with the Number 1
Code Gear, therefore we always start the process by testing Number 1
Code Gear. This effect may not be present in all Code Chambers.
Button (1) will usually be the $1^{\text {st to indicate if it is in the Code. }}$
This effect is not present in the new 5000 series
and will be dealt with in the next publication.
Button info:
Info: The button numbers in this practical correspond to the button
numbers on the products.

Further Uses For the CB Button Gauge:

Supra:

Apply tension using the opening button, this allows you to measure the amount of movement on the buttons.
There is a distinct difference in movement between those buttons that are in the code, and those buttons that are not in the code.
The radial line that is nearest the top of the spindle [with the new blue button] is used for this purpose. The Button Gauge has been updated yet again. It now has 3 lines to accommodate manipulating the Supra buttons.

Button gauge

Keylex:
To decode the Keylex, press all the buttons except the "C" button [Clear].
Now use the button gauge to measure each of the CODE buttons by depressing them lightly until they come to a STOP.
Buttons that are NOT the CODE will stop moving when the top indicator line of the button gauge [nearest the blue button] just enters the spindle hole of the gauge, and will remain just visible.
Those buttons that are in the code will travel further and the indicator line will disappear completely.

Don't forget to press the CLEAR button before you enter the code to OPEN the lock.

Depressed Position 3

Number 1 Code Gear is not yet in position.

number
of the Code, (see Code charts Chapter ii Part 3) as it needs more than a 1 Step Change to align its Gate. Therefore to advance Number 1 Code Gear one further Step Change we press another Button.

Release
 Press

Tension
Button (2) This means that Number 1 Code Gear has advanced 2 Step Changes. In this case the lock will open when Tension is applied.

Code is: 1-2

Part ii.	Section 2
	Let's Start to Manipulate the Simplex 1000 and similar locks with the same chamber.
Example B.	Code of 2-3-4
1	
Apply	Tension: Test all Buttons by attempting to depress each Button in turn using light Tension \& Pressure only.
2	
	Button (1) will depress to
	Depressed Position 2
	(because it is not in the Code and its Gate is already aligned)
3	One of the other Buttons will feel <<SOLID \gg.
	In this case Button (2) is \ll SOLID \gg. and Buttons (3) and (4) depress to
	Depressed Position 3
	with Button (5) being depressed to
	Depressed Position 2
	(not in Code, this tells us that there only 3 numbers in the Code)
4	We now need to find the position of Number 2 Code Gear within the Code as Button (2) felt <<SOLID >> therefore it is in the Code.
Release	Tension

Press	Button (2)
Apply	Tension
Test	Buttons (3) and (4)
	(3) and (4) will depress to Depressed Position 3

$\mathbf{5}$	We now know that Button (2) is not the last number of the Code, because, if the Gate of Number 2 Code Gear had come into line, either Buttons (3) or 4. would feel <<SOLID >>, and that would mean that it only required 1 Step Changes to align its Gate, therefore we need to advance Number 2 Code Gear 1 Step Change (a total of 2 Step Changes).
Release	Tension
Press	Button (3) Apply Test TensionButton (4) using light Tension \& Pressure. Button (4) will depress to Depressed Position 3

\ggg Now we will take a logical leap \lll This means that we are taking in the information which we have gleaned,
and put it together to make certain deductions.

Part ii.	Section 3: Code Charts					
	Here are 4 charts which show the position in a Code of a given number, depending on how many Step Changes a Code Gear has to take to bring its Gate into alignment with its Stump.					
CODE CHARTS	Number of Presses to Align Gate for 5 numbers in a Five Number Code					
Position In Code		1	2	3	4	5
	1					X
	2				X	
	3			X		
	4		X			
	5	X				

CODE CHARTS	Number of Presses to Align Gate for 4 numbers in a Four Number Code					
Position In Code		1	2	3	4	
	1			X	X	
	2		X			
	3					
	4					

CODE CHARTS	Number of Presses to Align Gate for 2 numbers in a Two					
Number Code						

Do not go on until you understand all of the previous process. It is important for the next process. The previous examples show how we find a number that is in the Code, and then advance its Code Gear one Step Change at a time to determine when its Gate is lined up with its Stump, this tells us the position in the Code; we have also found other numbers that are not in the Code by looking at how far a Button is depressed.

Part ii.	Section 4:
	Let's Start to Manipulate the Simplex 1000 and similar locks with the same chamber. Double Number Press : [indicated by the ' $\boldsymbol{\alpha}$ ' sign between 2 Button numbers]
Example C.	Code of $3 \& 4$ together then $1 \& 2$ together
Apply	Tension and test all Buttons
	Button (1) is <<SOLID >> - therefore, indicating that it is in the Code.
Release	Tension
Press	Button (1) and
Apply	Tension
Test	Buttons (2) - (3) - (4) - 5), Button (2) shows to be <<SOLID >> therefore, [indicating that it is in the Code and Button (1) is last number of the Code.] Buttons (3) - (4) -(5) all move to Depressed Position 3
Release	Tension
Press	Button (2) and then (1) advancing Number 2 Code Gear
Apply	Tension
Test	Depressed Position 3 NB. We could not test Button (2) in its $1^{\text {st }}$ position as Number 1 Code Gear was already located in that position Depressed Position 1
Release	Tension

Press	Button (3)
Apply	Tension
Test	Buttons (4) - (5) Buttons (4) -5 have moved to
	Depressed Position 3
Release	Tension
Press	Button (4)
Apply	Tension
Test	Button (5) it has moved to
	Depressed Position 3
	[This means that we still have not found the No 2 Code Gear Gate position.] At this stage we have 2 Options. No 1 Option: is that Button (2) is doubled up with Button (1) as a Double Number Press , or No 2 Option: is that it is the $1^{\text {st }}$ number of the Code.
Reset	[by resetting - this action releases the Tension as well]
	We'll start with No 1 Option and ...
Press	Button (1) \& (2) together
Apply	Tension
Test	(3) - (4) -(5) Button (3) is <<SOLID >> therefore, is in the Code. Button (4) moved to
	Depressed Position 3
	Therefore, may or may not be in the Code. Buttons (5) moved to
	Depressed Position 2

	Therefore, not in the Code.	
	This proves that the $1^{\text {st }}$ Option was correct. You will note that Buttons (1) \& (2) only had 1 Step	
		? - ?
Reset	[by resetting - this action releases the tension as well]	
Press	Buttons (3) - (1) \& (2)	
Apply	Tension	
Test	Button (4) Button (4) is <<SOLID >> therefore, is in the Code. Button (3) with 2 Step Changes is $2^{\text {nd }}$ from last number [Remember that a Double Number Press is seen mechanically as a Single Number. In this case $1 \& 2$ are both in the last number position.]	
		?-3
	This leaves the following permutations to test	
	Buttons (4)-(3)	(1) ${ }_{*}$ (2)
	Buttons (4) \& (3)	(1) $)_{\text {(2) }}$
	Buttons (3)	(4) $\mathbf{*}^{(1)}$ \& (2)
	3\&4-1\&2-x	

Notes:	In the next Section of this 'Practical', all the 'obvious' actions have been removed, for example : Release tension / Apply tension etc etc. By this stage you should be well practiced with these procedures. Also the next Section of this 'Practical' will be using abbreviations.

$\mathbf{2}$	
Press	B (2) to advance No $\mathbf{1} \mathbf{C / G}$ one further Step/C
Test	B's (3) - (4) - (5)
	all move to DP/3
$\mathbf{3}$	B(3) to advance No $\mathbf{1} \mathbf{C / G}$ one further Step/C
Press	B's (4) - ©5
Test	B (5) $=$ <S $>$ number 4 moves to DP/3

$\mathbf{4}$	
Test	B (5) as we know it is in the Code
Press	B's (1) - (2) then B(5)
	(No 1 C/G has been advanced 3 Step/C's and 5 by 1 Step/C)

5	
Test	B's (3) - 4)
	B (3) $=<$ S > and B (4) moves to DP/3
	Therefore, now we know that No $\mathbf{5} \mathbf{C / G}$ only required 1 Step/C to align its Gate and is therefore, the last number in Code.
	The known Code thus far is : ?-1 [3 Step/C's] - ? - $\mathbf{5}$ [1 Step/C]. $?-?-1-?-5$
As	B (3) $=\langle$ S \rangle, it is in the Code, therefore, we find out where B (3) is, in the Code.
We do NOT test	B (3) at its $1^{\text {st }}$ Step/C as No $5 \mathbf{C / G}$ is already in the last position with 1 Step/C.

Press	B's (1) - (3) - 5)
	No 1 C/G has advanced 3 Step/C's, No 3 C/G has advanced 2 Step/C's and No 5 C/G has advanced by 1 Step/C
Test	B's (2) - (4) both move toDP/3
	This tells us that No 3 C/G is not aligned yet, having only been advanced by 2 Step/C's. We cannot test it with 3 Step/C's because No 1 C/G has already been advanced by 3 Step/C's [already taking that position]. Therefore, we advance B (3) to detect whether it is the $1^{\text {st }}$ or $2^{\text {nd }}$ number of the Code.

7	
Press	B's (3) -(1). (2) and (5).
Test	B (4) this shows <s>
	Therefore, No 3 C/G required 4 Step/C's to align its Gate and is $4^{\text {th }}$ from last number in Code. NB. This also means that there can only be ONE Double Number Press number in this Code.
	The known Code thus far is : ? - $\mathbf{3}$ [4 Step/C's]-1 [3 Step/C's] - ? - $\mathbf{5}$ [1 Step/C's].
	?-3-1-?-5
	We now need to find the position of number No $4 \mathrm{C} / \mathrm{G}$ in the Code.
Reset	
Press	B's (3) - (1) - (4) - (5).
Test	B (2), and this shows to be <S> Therefore, B(2) is in the Code. And No $4 \mathrm{C} / \mathrm{G}$ is in its correct position.
Press	B's(2) - (3) - (1) - (4) - 5)
	Try to open the lock - and in this instance it will not open, therefore, there must be a Double Number Press set of numbers in the Code, therefore, B(2) has to be one of the Double Number Press's .

Suffix:					
The worst scenario is a $\mathbf{5}$ digit/number Code with no double or triple Codes, and the \mathbf{B} (1) or $\mathbf{N o} \mathbf{1} \mathbf{C} / \mathbf{G}$ is the first number of the Code. This Code is rather difficult to de-code because No 1 C/G will need 5 steps to place it in its Gate, leaving no Buttons to test. Therefore, you will know the $\mathbf{1}^{\text {st }}$ Code Number and it's position, leaving you with having to try all the permutations of a 5 digit/number Code with number 1 always being the first number, see the chart following.					
There are 24.					
12345	12543	13524	14523	14352	15342
12354	12534	13542	14532	14325	15224
12453	13452	13245	14235	15234	15423
12435	13425	13254	14253	15243	15432

Abbreviations Index	See Chapter ii Part 5	
Button (1)	B ${ }^{1}$	etc
Depressed Position 1	DP/1	etc
Number 1 Code Gear	No 1 C/G	etc
<<SOLID >>	<S>	etc
Step Change	Step/C	etc

Numbers in the Code	$\underline{1}$	$\underline{2}$	3	4	5
TEST No? PRESS No? No ? SOLID					
Position in the Code	last	$2^{\text {nd }}$ from last	$3^{\text {rd }}$ from last	$4^{\text {th }}$ from last	$5^{\text {th }}$ from last
$\begin{aligned} & \text { PB1 [PUSH } \\ & \text { BUTTON 1]? } \\ & \text { PB2 ? PB3? } \end{aligned}$					

Mark these empty grids to chart your findings:

CODE CHARTS	Number of Presses to Align Gate for 5 numbers in Code			
Position In Code				
	Five Number Code Chart			
CODE CHARTS	Number of Presses to Align Gate for 4 numbers in Code			
Position In Code				
	Four Number Code Chart			
CODE CHARTS	Number of Presses to Align Gate for 3 numbers in Code			
Position In Code				
	Three Number Code Chart			
CODE CHARTS	Number of Presses to Align Gate for 2 numbers in Code			
Position In Code				
	Two Number Code Chart			
12345	12543	13524	14523	14352
12354	12534	13542	14532	14325
12453	13452	13245	14235	15234
12435	13425	13254	14253	15243

